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ABSTRACT

In 1947 W. W. Hansen and colleagues accelerated electrons with microwaves generated from a Klystron.
That work led to the 3km linear accelerator at the Stanford Linear Accelerator Center completed in 1968. 

In November 2005 we successfully accelerated electrons with a visible modelocked laser source.  Today we are 
conducting experiments at SLAC to develop photonic bandgap dielectric based accelerator structures to 
efficiently couple laser radiation to electrons.  The dielectric structures allow laser accelerators to operate at 
accelerating gradients of 1GeV/meter.  

We have explored the possibility of laser accelerator driven coherent X-rays using a free electron laser.  The 
approach looks promising because of the replacement of the traditional magnet based undulator with a laser 
driven dielectric based undulator.  Progress toward the accelerator and coherent X-ray source will be discussed.
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“Don’t undertake a project unless it is manifestly important 
and nearly impossible.” Edwin Land – 1982
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The development of the linear accelerator at 
Stanford University

“we have accelerated electrons”

1947: The Mark I, 1m, 6 MeV

The Mark III

1953: 400 MeV
1955: 600 MeV
1960: 1 GeV

Hansen's report to the Office of Naval Research

Meson Physics carried out 
by  W. K.H. Panofsky

High resolution electron 
scattering from nuclei by 
Robert Hofstadter 

A high-energy 
physics research tool

U E dr= ⋅∫
r r
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The “Microwave” Lab (Now HEPL 
and Ginzton Labs) played a crucial 

role on the development of particle 
accelerators and the 

corresponding RF technology 

The Klystron tube

Ed Ginzton
W. W. Hansen – back rightMarvin Chodorow & Klystron
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• $100M proposal
• numerous studies and reports 
• > 10 years of effort

“Project M”
1955 first brainstorming and informal discussions

First beam at SLAC, 1966
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Particle accelerator research at Stanford

6

1st Klystron (Varian, 1930s’) 1st Linac 1946

The superconducting linac
In HEPL, 1960

Demonstration of the  FEL, 1977

The 2-mile collider (SLAC)

LEAP, 1997-2004
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1968: First evidence of Quarks
1974: Discovery of the ψ particle
1976: Discovery of the charm quark 

and the τ lepton 
1997: The BaBar experiment
2006: LINAC coherent X-ray source

Other developments
• SSRL user facility
• Computer science, software
• KIPAC Particle Astrophysics
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The Livingston plot – 1954
Innovation leads to exponential progress

In 1954 Livingston noted that 
progress in high energy 
accelerators was exponential 
with time.

Progress was marked by 
saturation of the current 
technology followed by the 
adoption of innovative new 
approaches to particle 
acceleration.

Laser sources coupled with 
related technologies enable 
new approaches to Advanced 
Electron Accelerators.



Panel on Light Source Facilities, National Science Foundation   Wednesday 9 January 2008            Lawrence Livermore National Laboratory

Byer
Group

Contents

Historic Background

The  TeV-Energy  Physics Frontier

Laser Electron Accelerator Project – LEAP
HEPL Experiments from  1997 – Nov 2004
E163 Experiments at SLAC

Laser accelerator structures
Inverse FEL for electron pulse compression

Coherent X-ray laser Generation
Components of the X-ray laser

Dielectric Accelerator and Undulator Structures
FEL gain and efficiency

Future Challenges
Toward Table top Synchrotron Sources



Panel on Light Source Facilities, National Science Foundation   Wednesday 9 January 2008            Lawrence Livermore National Laboratory

Byer
Group

proton beams

What is next?

Future TeV e+e- collision 
experiments

• Top Quark Physics 

• Higgs Boson Searches and Properties 

• Supersymmetry

• Anomalous Gauge Boson Couplings 

• Strong WW Scattering 

• New Gauge Bosons and Exotic Particles 

• e-e-, e-γ, and γγ interactions 

• Precision Tests of QCD 

The NLC ZDR Design Group and the 
NLC Physics Working Groups
Snowmass `96 workshop

historical trend of high energy
physics experiments
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33 km

3 km

Existing and Proposed Linear Accelerators

Existing SLAC – 50 GeV Proposed ILC Accelerator 1 TeV

The goal of the Laser Electron Accelerator Program – LEAP - is to invent 
a new approach that will allow TeV physics on the SLAC site. 

To achieve the goal we need an acceleration gradient of 1 GeV per meter.
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Laser-driven particle acceleration

IntroductionIntroduction

• Idea came about soon after the invention of high-
peak power lasers  (earliest articles go back to 1971)

• different laser particle acceleration concepts
ponderomotive
linear electric field
inverse cherenkov
inverse FEL
active gain medium
laser driven plasma wakefield
…

• very controversial topic

• experimental demonstrations are fairly “recent”
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Laser Driven Plasma Wakefield Acceleration
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Principle of the Wakefield Accelerator
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Wakefield Accelerator as a Booster for SLAC
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Linear accelerators - accelerating relativistic 
electrons

1974 –sabbatical leave, Lund     1994 – SLAC summer school 2004 – Successful 1st Exp

electron 
source

DC potential RF modulator
(buncher)

pre-accelerator accelerator  structures

0 eV 100 keV ~ 2 MeV
MeV/m   50≤

∆
∆

x
U

0=β 21~β 1→β

A few rules of the game

“An accelerator is just a transformer” – Pief Panofsky
“All accelerators operate at the damage limit” - Pief

“To be efficient, the accelerator must operate in reverse”
- Ron Ruth, SLAC

“ It is not possible to accelerate electrons in a vacuum”
Lawson - Woodward theorem

“An accelerator requires structured matter – a waveguide -
to efficiently couple the field to the electrons” anon
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Emergence of new technologies make 
Laser Acceleration Possible

NUFERN

ALABAMA 
LASER

high power
fiber lasers

ultrafast laser 
technology

nanotechnology

60 W/bar, 50% 
electr. efficiency

efficient pump 
diode lasers

< 10 fs
IMRA mJ 500 

fsec laser

new materials

high 
strength 
magnets

New ceramics
Nd:Fe

nano-
tubes

high purity optical materials 
and high strength  coatings

17

sodium 
yellow

Leveraging 
investment in 

telecom

30 W/bundle, 40% 
electr. efficiency
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Master oscillator electron beam

reference
beam

Proposed layout of the laser
system for a TeV collider

A low-power ultra-stable master 
oscillator serves as a reference  clock 
for the entire accelerator

local modelocked oscillators are 
phase-locked to the master oscillator

A mode converter transforms the 
TEM00 mode preferred  by the laser  
to a TEM01 acceleration mode

Laser  amplifiers  increase   the  
power of  the  TEM01 mode  from  sub-
watt  to multiple tens of watts of 
average power 
mode

Schematic of Future TeV scale Laser Accelerator
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2.  Low bunch charge
problem

• Take advantage of high laser
repetition rate

• Multiple accelerator array architecture  

Laser pulse structure that leads to high electron bunch repetition rate
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104 laser pulse trains per second
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Dramatic increase of •electric field cycle frequency
•macro pulse repetition rate 

Laser beam parameters for TeV scale accelerator

Requires 10kW/meter or 10MW/km at ~40% efficiency Laser Source!
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fsec 5  m, 5.1 == τµλ

attosec 14 
 nm, 15

=∆
=∆

t
x

1 degree of optical phase

laser 
beam

electron
bunch

~104 e-/bunch

Atto Second Electron Bunches
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Laser driven particle acceleration

collaborators

ARDB, SLAC
Bob Siemann*, Bob Noble†, Eric Colby†, Jim Spencer†, Rasmus

Ischebeck†, Melissa Lincoln‡, Ben Cowan‡, Chris Sears‡, D. Walz†, 
D.T. Palmer†, Neil Na‡, C.D Barnes‡, M Javanmarad‡, X.E. Lin†

Stanford University
Bob Byer*, T.I. Smith*, Y.C. Huang*, T. Plettner†, P. Lu‡, J.A. Wisdom‡

ARDA, SLAC
Zhiu Zhang†, Sami Tantawi†

Techion Israeli Institute of Technology
Levi Schächter*

UCLA
J. Rosenzweig*

‡ grad students    † postdocs and staff       * faculty

Laser Electron Accelerator Project - LEAP
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1     E.L. Ginzton Laboratories, Stanford University
2 Stanford Linear Accelerator Center  (SLAC)
3 Department of Physics, Stanford University

Bob Byer1

Bob Siemann2 Chris Sears2 Jim Spencer2

Tomas Plettner1 Eric Colby2

Ben Cowan2

•Chris Mcguinness2

•Melissa Lincoln2

•Patrick Lu1

•Mark Kasevich3

•Peter Hommelhoff3

•Catherine Kealhofer3

Atomic Physics collaboration

New students
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Laser acceleration – Dielectric structure 
means high acceleration gradient

Energy gain through longitudinal electric field
• gradient  = longitudinal electric field
• linear e-beam trajectory 

no synchrotron radiation
energy scalable

Dielectric based 
structure with 
vacuum channel

very high peak 
electric fields

Inherent attosec
electron pulse

2 µm laser 6 fsec period  
1deg of phase = 20 attosec

Unique 
opportunity for 
light sources

linear particle 
acceleration 

process

11

22

33
λ ~ 2 µm, T~ 6.6 fsec

T~ 20 attosec
1° of optical phase

electric field

electron bunch

λ ~ 2 µm, T~ 6.6 fsec

T~ 20 attosec
1° of optical phase

electric field

electron bunch

∆U E dzz= ⋅∫

vacuum 
channel

NIR solid-
state lasers

metals

Es → 1010 V m

Gradient GeV m→ 1
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LEAP
area

kicker
collimator

slits
FEL

wiggler
superconducting

accelerator structures

amplified laserBeam Energy ~30 MeV
Telectron ~2 psec
Charge per bunch    ~5 pC
Energy spread ~20 keV
λlaser 800 nm
Elaser 1 mJ/pulse 

HEPL beam parameters

The proof-of-principle experiment

electron
beam

material
boundary

θ

electron
beam

Ez

8 µm 
Kapton 1 
µm Au

laser
beam

∆U E dzz=
−∞∫
0
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electron
beam

laser
beam

8 µm thick gold-
coated Kapton tape

stepper motors

accelerating
phase

decelerating
phase

laser
beamelectron

beam

Inverse
FEL

tape 
drive

LEAP Experimental Success- November 2004

The simplified single stage
Accelerator cell that uses 
gold coated Kapton tape 
to terminate the Electric field.

The LEAP experimental apparatus that
Includes the LEAP single stage accelerator
cell and the inverse FEL.

We have accelerated electrons with visible light!
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Tomas Plettner and LEAP Accelerator Cell

The key was to operate the cell above damage threshold to generate
energy modulation in excess of the noise level.
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• confirmation of the Lawson-Woodward Theorem

• observation of the linear dependence of energy gain 
with laser electric field

• observation of the expected polarization dependence

E dzz
−∞

+∞

∫ = 0

∆U Elaser∝

E Ez laser∝ cosρ

laser-driven 
linear 

acceleration in 
vacuum

Accelerated electrons – key experimental results
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The acceleration is linear
with the applied laser field
as expected from theory.

(This is a modest laser with ~200 micro Joules in 4psec)
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2nd Success:  Visible light driven  IFEL

30

* graduate student C.M. Sears

Cross-correlation in time Observation of harmonic interaction

AARD subpanel Dec 21, 2005
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The new E163 experiment hall - 2005

The NLCTA
Next Linear Collider Test Accelerator 360MeV
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60 MeV
10 pC
~ 1psec

λ = 800 nm
U ~ ½ mJ/pulse
τ ~ 200 fsec
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GOAL: Invent and Test Accelerator structures

34

R. Ischebeck, R. J. Noble, B.Cowan*, M. Lincoln*,C. Sears*

Photonic bandgap fiber structures 2 and 3-D photonic bandgap structures

Planar waveguide structures

*grad. students

Current experimental fiber accelerator 
structure research 
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Goal:  Develop Theory for laser accelerator physics

35

Beam loading calculations vs N 
Coupling Efficiency vs bunch charge

N (Number of bunches) 

Energy efficiency of laser accelerators, single and multiple bunch operation

optimum efficiency
about 1 fC
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Hollow core PBG fibers 3-D photonic bandgap structures

B. M. Cowan, Phys. Rev. ST Accel. Beams , 6, 101301 (2003).X.E. Lin, Phys. Rev. ST Accel. Beams 4, 051301 (2001) 

Z. Zhang et al. Phys. Rev. ST AB 8, 071302 (2005)
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Periodic phase modulation structures

T. Plettner et al, Phys. Rev. ST Accel. Beams 4, 051301 (2006) 

Many possible dielectric microstructure architectures

Planar waveguide structures
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Transverse pumped grating phase-reset structure

T. Plettner et al, Phys. Rev. ST Accel. Beams 4, 051301 (2006) 

Main concept: quasi phase-matching of the EM field
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traveling electron experiences 
accelerating force at all times
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vacuum channel width < λ

1 J/cm2 fluence

~10 fsec pulses

GeV/m 4~unloadedG
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Operate at the Breakdown Limit
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Y. Min Oh et al, International Journal of Heat and Mass Transfer 49 (2006) 1493–1500
B. C. Stuart et al, Physical Review Letters 74, 2248 (1995) 
M. Lenzner et al, “Femtosecond Optical Breakdown in Dielectrics”, Phys. Rev. Lett. 80, 4076 (1998)

GV/m 2~,TEG⊥(At breakdown limit)
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The most simplistic wakefield picture
The accelerator operates in reverse

Assume a “perfect” dielectric  (real index of refraction)
The loss factor mechanisms come from diffraction

[1] Phys. Rev. Lett. 74, 3808 (1995)
[2]  Phys. Rev. STAB 6 02441 (2003) 
[3]  Phys. Rev. STAB 9, 111301 (2006)
[4]  Phys. Rev. STAB 7, 061303 (2004) 

γλπ 1~4 0 px
fwd. Smith-Purcell [1]

( )( ) LWLL EEE
Z

DLqV τ22

02
+−=beam loading [2,3,4]

GV/m 4~||,TEG

40 fC

GeV/m/pC 100~CK

but I have neglected the broadband 
Cherenkov wake…

GeV/m/pC 100~CK

fC  20~bQ
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focusing triplet

2 cm 1 mm

electron 
beam
60 MeV

laser 
beam

to the energy 
spectrometer

fabricated by graduate student C.M. Sears

fabricated by graduate student P.P. Lu

Transverse pumped phase-reset structure 
Goal: test this structure at SLAC

a) b)a) b)
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optical 
buncher

compressor 
chicane

laser PMT

400 nm 
filter

800 nm

Present experiment at E163

Micro-bunching of a 60 MeV electron 
beam at 800 nm from a 3-period IFEL

(Principal author: Chris Sears)
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Present experiment at E163
Preliminary results provided by Chris Sears



Panel on Light Source Facilities, National Science Foundation   Wednesday 9 January 2008            Lawrence Livermore National Laboratory

Byer
Group

optical 
buncher compressor 

chicane

laser PMT

400 nm 
filter

800 nm

PMT

Near-future experiment at E163

400 nm 
filter

quartz 
grating

pellicle

Observation of wakefields of the microbunched beam from a quartz grating
Beam position diagnostic
Inverse process of laser acceleration from the grating
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Near-future experiment at E163

Laser-acceleration from a quartz-based mm-long accelerator microstructure

focusing triplet

2 cm 1 mm

electron 
beam
60 MeV

laser 
beam

to the energy 
spectrometer

fabricated by graduate student C.M. Sears

fabricated by graduate student P.P. Lu
a) b)a) b)
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focusing triplet

electron 
beam
60 MeV

beam 
splitter

laser 
beam

phase 
delay

to the energy 
spectrometer

Cascading of microstructure accelerators 

Future Experiments
Goal: test multiple stage acceleration

Show scalabilityShow scalability
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Contents

Historic Background

The  TeV-Energy  Physics Frontier

Laser Electron Accelerator Project – LEAP
HEPL Experiments from  1997 – Nov 2004
E163 Experiments at SLAC

Laser accelerator structures
Inverse FEL for electron pulse compression

Coherent X-ray laser Generation
Components of the X-ray laser

Dielectric Accelerator and Undulator Structures
FEL gain and efficiency

Future Challenges
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SSRL

undulator

3 km

120 m

accelerator

Experiment 
lines

LCLS
injector

T ~ 230 1 fsec
λ ~ 1.5 – 15 Å
Φ ~ 1012 γ / pulse

SASE-FEL 14 GeV

• materials science
• chemistry
• atomic physics

100 m

T ~ 230 1 fsec
λ ~ 1.5 – 15 Å
Φ ~ 1012 γ / pulse

SASE-FEL 14 GeV

• materials science
• chemistry
• atomic physics

100 m

Coherent picosecond X-ray wavelength sources
LINAC Coherent Light Source – at SLAC

• km-size facility
• microwave accelerator
• λRF ~ 10 cm
• 4-14 GeV e-beam

• 120 m undulator
• 23 cm period
• 15-1.5 A radiation
• 0.8-8 keV photons
• 1014 photons/sec
• ~77  fsec

• separate user lines
• 120 Hz pulse train

LCLS propertiesLCLS properties

TTF:     Tesla Test Facility; fsec EUV SASE FEL facility
XFEL:  Proposed future coherent X-ray source in Europe…
TTF:     Tesla Test Facility; fsec EUV SASE FEL facility
XFEL:  Proposed future coherent X-ray source in Europe…

RFRF--accelerator driven SASE FEL facilities  accelerator driven SASE FEL facilities  -- 20092009
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source of free 
particles

accelerator 
section

undulator

The Key Components of the SASE-FEL architecture
SASE – Self Amplified Spontaneous Emission

dielectric structure, 
laser driven

dielectric structure
based laser-driven 

particle accelerators 

SSRL

undulator

3 km

120 m

accelerator

Experiment 
lines

LCLS
injector

SSRL

undulator

3 km

120 m

accelerator

Experiment 
lines

LCLS
injector

laser-driven
high rep. rate
very compact
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Motivation for an FEL application
Attosecond Physics at hard X-ray energies

~ 1 GeV/m gradient GeV electron beam in 1-2 m

Few-attosec pulse structure

Possibility for MHz rep. rate

Short undulator preserve the 
few-attosec pulse structure on 
the photons

Modelocked lasers and low-
power amplifiers

Suitable electron injectorSuitable electron injector

Matching short undulatorMatching short undulator
Requirements:Requirements:
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Source of free 
particles

Accelerator 
section

undulator

Architecture of a laser-driven free-electron X-ray source

λλ ~ 1 ~ 1 µµmm

• sub-kW of electrical power
• no radiation or electrical hazards
• MHz repetition rates

solid state, solid state, 
tabletoptabletop

laser systemlaser system

Laser-driven field 
emission sources

MEMs-based laser-
driven dielectric 

accelerator structure

MEMs-based laser-
driven dielectric 

deflection structure

x-rays

ultra short pulses
high peak electric fields

total length on the order 1 mtotal length on the order 1 m

optically 
bunched 
electrons
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source of free 
particles

accelerator 
section

undulator

Development of the three key laser-driven components

Objective:Objective:

develop a compact laser-
driven electron injector 

1. High rep. rate
2. Low power consumption
3. Ultra low emittance (~10-9 m-rad)
4. ~10 MeV in a few-cm structure
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The klystron
• ~2 m tall
• 1/3 MV !
• high power
• water cooling
• X-ray radiation
• 10 Hz rep. rate

A conventional electron injector

temporary source of relativistic 
electrons for present laser-acceleration

experiments

RF cathode

a room full of lethal and bulky equipment…

The NLCTA accelerator front end
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field emitter 
tip

Field emission tip propertiesField emission tip properties
1. laser-assisted tunneling of electrons 

from the atom to free space
2. Highly nonlinear

3. Potential for timed sub-optical 
cycle electron emission

metal vacuum

e

P. Hommelhoff et al, Kasevich group

laser 
beam

A laser-driven field-emission free-electron source

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich, “Field Emission Tip as a Nanometer 
Source of Free Electron Femtosecond Pulses”, PRL 96, 077401 (2006)

radm  10~ 10 −−
tipε
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Laser

field emitter 
tip

Electrostatic 
lens

GND

Accelerator 
cell

grid

MCP

10 fsec

1. multiple-electron emission
2. focusing with electrostatic lens
3. verify ultra-low emittance
4. verify ~700 attosec bunch
5. modulate energy

objectivesobjectives

Addition of a low-energy laser-accelerator cell

graduate 
student 

Anthony Serpry

Collaboration work with the Kasevich group

J.W. Lewellen, J. Noonan, “Field-emission cathode gating 
for rf electron guns”, Phys. Rev. ST AB 8 033502 (2005)

Concept of field-emission arrays:
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source of free 
particles

accelerator 
section

undulator

Development of the three key laser-driven components

Objective:Objective:

develop MEMs based laser-driven 
accelerator structures

1. Dielectric optical MEMs structures
2. High acceleration gradients  (~ 1 GeV/m)
3. Mono-energetic, maintenance of low emittance
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Proposed parameters for laser driven SASE–FEL

Laser accelerator undulator

~ 2 m

~ 1 GeV

Input electron beam Input electron beam 
~ 1-2 GeV beam energy
~  10 10 attosecattosec pulse durationpulse duration
~   1 pC bunch charge
~   0.05% energy spread

undulatorundulator
λu ~ 200 µm
Lu ~  20-40 cm
B0 ~  ½ - 1 T

( ) 







−=′

∂
∂

∆
∆∈

−∑ vetzE
t j

i jψχ2,~

Field envelope growthField envelope growth

electrons per 
unit volume

Smallest 
possible 

beam size

φb < 500 nm

Solid state 
laser

λ ~  1 µm

3 fsec10 attosec
pulse structure

λ
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source of free 
particles

accelerator 
section

undulator

Development of the three key laser-driven components

First Idea:First Idea:

Periodic Magnetic Undulator
Field strength ~ 1 Tesla
Modulation Period ~ 0.1mm
Length ~ 30cm
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59

ε ~ 10-9 m-rad
qb ~   1 fC

LG ~   1 cm
Lsat ~  30 cm

LFODO ~   1 cm
oxy ~  3 µm

frep ~  1 MHz
ηacc ~  1% 
Pacc ~  10 W laser power
ηlaser ~  10 % wallplug efficiency
Pe ~  100 W electrical power

1% of Ub = 10-7 J 
U  ~ 107 Photons

~ 1 nJ/pulse   
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1-D FEL model
Design parameters 
must satisfy these 
conditions

Starting point

λb ~  18 attosec
Ub ~ 10-7 J

~ 30 cm
~ 1 cm ~  3 µmUndulator 

design

Laser power 
required

1% 
conversion 
efficiency
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source of free 
particles

accelerator 
section

undulator

Development of the three key laser-driven components

KEY IDEA:  Use fsec laser to Drive Dielectric Undulator

Objective:Objective:

develop MEMs based laser-driven 
deflection structures

1. Dielectric optical MEMs structures
2. High gradients  (~ 1 GeV/m)
3. Possibility for compact undulators
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accelerator structure deflection structure

( ) 0=×+ ⊥⊥ BvE
rrr ( ) 0≠×+ ⊥⊥ BvE

rrr

GeV/m 4~ ~ 2
1

|| →laserEE
r GeV/m 2 ~ ~ 5

1 →⊥ laserEqF
r

T. Plettner, “Phase-synchronicity conditions from pulse-front tilted laser beams on one-dimensional 
periodic structures and proposed laser-driven deflection”, submitted to Phys. Rev. ST AB

keykey ideaidea
extended phase-synchronicity between the EM field and the particle

The structure geometry determines the force component
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uλundulator period uλundulator period

pulse-front 
tilted laser 

beams

deflection 
structure 
sections

uλundulator period uλundulator period uλundulator period uλundulator period

pulse-front 
tilted laser 

beams

deflection 
structure 
sections

A dielectric structure undulator

• same loss factorsame loss factor as the laser accelerator: ~100 GV/m/pC
• similar structure geometrysimilar structure geometry fabrication compatibility
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pulse fluence vs. 
undulator length

short pulse regime

1D model of Attosecond 120keV FEL
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laser on

focusing triplet

2 cm 1 mm

electron 
beam
60 MeV

laser 
beam

laser off
(no deflection)

Test of laser-deflection Structure

Prove the concept of a phase-synchronous deflection forceProve the concept of a phase-synchronous deflection force
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60 MeV
electron 
beam

deflector 
structure

1 mm

90 degree 
spectrometer 

magnet

Ce:YAG
scintillator

screen

45° pulse-front 
tilted laser 

beam

PI MAX 
camera

discarded 
electrons

filtered 
electron 
beam

energy

ve
rti

ca
l 

di
m

en
si

on

laser off
laser on

Near-future experiment at E163
Measure Deflection of the Delectric Laser Driven Undulator
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pulse-front tilted laser 
beam

deflection 
structure 
sections

pulse-front tilted laser 
beam

electron 
beam

mask or high-
reflector

undulator 
radiation

pulse-front tilted laser 
beam

deflection 
structure 
sections

pulse-front tilted laser 
beam

electron 
beam

mask or high-
reflector

undulator 
radiation

Look for undulator radiation

Prove the concept  Prove the concept  

measure
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Contents

Historic Background

The  TeV-Energy  Physics Frontier

Laser Electron Accelerator Project – LEAP
HEPL Experiments from  1997 – Nov 2004
E163 Experiments at SLAC

Laser accelerator structures
Inverse FEL for electron pulse compression

Coherent X-ray laser Generation
Components of the X-ray laser

Dielectric Accelerator and Undulator Structures
FEL gain and efficiency

Future Challenges

Table Top Synchrotron Source

“Don’t undertake a project unless it is manifestly important 
and nearly impossible.” Edwin Land – 1982
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A first step towards a Laser Accelerator driven 
Table Top Synchrotron X-ray Source

{Bending radius ~ 1m for 1GeV electron source}
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Dielectric structure FEL
• injector
• accelerator
• undulator

Laser-driven

1. photon energy of tens of keV 
2. ~105 photons/pulse
3. 80 MHz 1012 photons/sec

properties

initial work
• laser-particle accelerators (LEAP/E163)
• field-emission injector
• modeling of the undulator and FEL process

future
• dielectric structure accelerators
• test a laser-driven deflector
• construct a low-energy pre-accelerator
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Inject higher density of optically bunched electrons into the structure
search for small-signal gain
verify predicted beam loading and wakefield effects

Test other materials for dielectric structures
verify index of refraction and transparency window
perform laser-damage threshold tests
radiation damage tests

Integration of the components
cascading of ~103 mm-long accelerator sections
cascading of ~102 sub-mm long deflection sections
beam transport: steering and periodic focusing
beam diagnostics: BPMs, etc

Refinement of the idea
undulator optimization: periodic focusing, tapering, etc.
seeding, resonator configuration
harmonic generation
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The Livingston curve
W. K. H. Panofsky, SLAC Beamline, 1997

1. near-exponential growth 
in the beam energy up 
until about 1990

2. LHC and future NLC/ILC 
lie below the exponential 
growth curve

3. Exponential curve 
important for new physics

For future high energy collider
facilities  beyond the LHC and 
ILC  it  becomes   increasingly 
appealing   to  invest  in   new 
accelerator technologies

RF based accelerator 
technology is nearing its 

practical high-energy limit

Future Maximum gradient ~ 1000 MeV/m
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• BACK UP SLIDES
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Proposed parameters for laser driven SASE–FEL
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Laser damage and radiation damage studies
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Laser research
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The SCA-FEL facility

81

LEAP
area

kicker
collimator

slits
FEL

wiggler
superconducting

accelerator structures

amplified laserBeam Energy ~30 MeV
Telectron ~2 psec
Charge per bunch    ~5 pC
Energy spread ~20 keV
λlaser 800 nm
Elaser 1 mJ/pulse 

SCA beam parameters

Commercial, tabletop 
amplified sub-psec
mJ/pulse laser sources

The SCA Accelerator provided a source of 30MeV electrons for LEAP
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Laser acceleration concept

82

Pantell, 1979
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The LEAP experiment
(Laser Electron Accelerator Project)
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“New” technology: the laser

60 W/bar
50% now  78%
electrical 
efficiency

Stuart, et. al,, Phys Rev. Lett. Vol 74, No 12 p. 
2248 (1995)

damage threshold of 
dielectric materials

high power solid state lasers

modelocked laser technology

NUFERN ALABAMA LASER

high power fiber lasers

10 GV/m fields 
for 100 fsec
laser pulses
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Laser-acceleration from a quartz-based mm-long accelerator microstructure

focusing triplet

2 cm 1 mm

electron 
beam
60 MeV

laser 
beam

to the energy 
spectrometer

fabricated by graduate student C.M. Sears

fabricated by graduate student P.P. Lu
a) b)a) b)
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accelerator structure deflection structure

( ) 0=×+ ⊥⊥ BvE
rrr ( ) 0≠×+ ⊥⊥ BvE

rrr

GeV/m 4~ ~ 2
1

|| →laserEE
r GeV/m 2 ~ ~ 5

1 →⊥ laserEqF
r

key ideakey idea
extended phase-synchronicity between the EM field and the particle

The concept of a laser-driven particle deflection micro-structure
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uλundulator period uλundulator period

pulse-front 
tilted laser 

beams

deflection 
structure 
sections

uλundulator period uλundulator period uλundulator period uλundulator period

pulse-front 
tilted laser 

beams

deflection 
structure 
sections

A dielectric structure undulator

• same loss factorsame loss factor as the laser accelerator: ~100 GV/m/pC
• similar structure geometrysimilar structure geometry fabrication compatibility
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Calculated 120 KEV X-ray FEL Performance
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Linear accelerators - accelerating relativistic 
electrons

Schematic of a linear accelerator

electron 
source

DC potential RF modulator
(buncher)

pre-accelerator accelerator  structures
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100 keV 1 MeV 100 MeV 10 GeV 1  TeVSuperconducting Accelerator
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Dream:  Table Top Attosecond X-ray FEL Source

91

attosec light sources 
1° of optical phase at 2 µm 20 attosec

Table Top attosec x-ray 
source with medical and 
chemistry applications
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Preliminary model studies
• 1st initial feasibility study with the 1D FEL model
• Attosec bunching of 1fC helps enhance the gain
• “low” 1 MHz rep. rate low avg. power  
• Further more refined studies under way
• It deserves a closer look

Take advantage of ultra-low 
emittance laser-accelerator e-
beam and new magnetic 
materials

1m

110 V
Prof. Byer’s dream…

20 asecHigh strength Nd:Fe
micromagnets

The wizard of optics


